Voici une phrase, notez une unique phrase, qui m'avait marqué lorsque
j'avais feuilleté l'Essai pour les coniques de Blaise Pascal. Il s'agit de
la définition du cône. Je vous invite à le lire jusqu'à ce que vous aillez
saisi.
«
Génération des sections coniques (Blaise Pascal)
Définitions
Si d'un point, pris hors du plan d'un cercle, on mène à un point pris sur
la circonférence une ligne droite infinie dans les deux sens, et qu'on lui
fasse parcourir la circonférence, le premier point demeurant immobile, la
surface que décrit cette droite infinie dans sa circonvolution sera dite
surface conique; l'espace infini compris à l'intérieur de la surface
conique sera appelé cône; quant au cercle, il sera dit base du cône; le
point immobile, sommet; la partie de la surface qui va du sommet en
direction de la base jusqu'aux autres parties à l'infini sera dite
demi-surface conique; la droite prise de cette manière, considérée dans
n'importe quelle position de sa circonvolution, sera dite génératrice.
»
Miguel